WebObjects

WR@Csus4.net

2004-01-08

1

Web Web

WebObjects

2 Backtracking and Cache Management?!

WebObjectcs Web

Apple Inside WebObjects : Web Application

Inside WebObjects : Web Application Apple

2.1
Q)
2.2

Backtracking, client-side page caching, and web component caching are three closely related
issues that cause many headaches for web application developers. Fortunately, WebObjects
offers a number of mechanisms that help you deal with the collective problem of managing

page state.

1

http://developer.apple.com/documentation/WebObjects/Web_Applications/BacktrackingAndCache/cha
pter_6_section_1.html

WebObjects 1/26

Web
Web
WebObjects ?

Dynamic web applications are possible due to, among other things, server-side state persistence
and state management. HT TP, the protocol of the web, is inherently stateless. However, storing
state in an application server makes persistence management in web applications possible. In
WebObjects, the Session object holds state but is not solely responsible for state management.
The Session object tracks sessions, flags WOComponent and WOElement objects with special
identifiers, and uses other mechanisms to hold and manage state. WOComponent objects

manage the state of their internal instance variables and dynamic el ements.

Web
Web HTTP
Web
WebObjects Session
Session WO
WO
WO

Along with these mechanisms, caching plays an important role in managing the state of visual
components. Caching allows a user to view a previously viewed webpage (even a dynamically
generated one) without the application needing to regenerate the page. Caching also plays a
crucial role in providing a good user experience in web applications. Caching lets users
backtrack using their web browser’s Back button, which often allows for instantaneous loading
of pages from the client-side cache rather than requesting a previously viewed page from the
application server. However, due to the diverse implementations of the HTTP protocol in web
browsers, backtracking behavior is inconsistent and requires considerable attention when
devel oping web applications.

Web
Web

Web HTTP
Web

In addition to client-side page caching, WebObjects also caches components in a server-side

cache. If used correctly, this is a valuable feature that can improve performance and user

WebObjects 2/26

experience. But you must be conscious of the relationship between server-side component
caching and client-side page caching, and how inconsistencies in backtracking behavior affect

the result when either or both caching features are active.

WebObjects

Web

2.3 Client-Side Page Cache

A web component is the aggregate of WebObjects elements and subcomponents. When a web
browser caches a webpage from a WebObjects application, it caches the HTML code of a
generated page (which does not include a web component’s programmatic entities, such as
instance variables). In contrast, server-side component caching caches a web component’s
definition and state.

Web WebObjects Web
Web Web HTML
Web

> Web

<html>....

Client-side page caching is a feature implemented by web browsers to improve performance
and user experience. Although WebObjects applications primarily publish dynamic webpages,
many websites serve static pages. They do not change as rapidly as content-driven dynamic
sSites.

WebObjects 3/26

Web WebObjects Web
Web

For instance, consider a website that publishes news stories and other articles. Although the
front page of the site probably changes a few times each day, it likely would not change in the
few minutes an average user spends browsing headlines and reading a few articles.

With client-side page caching active, the front page of the news website is cached on the
client’s computer upon the first visit. The first page could be large, containing images, banner
adds, and text. The user could select an article, read part of it, and access other articles through
URLs in the first article. Then, having visited five or six pages within the website, she could
backtrack to the main page. Since the content of that page is not likely to change in the time the
user took to peruse the five or six pages, the page should be reloaded from the local cache. So
the web browser—instead of requesting and downloading the main page from the web server
again—would retrieve it from the local cache, avoiding a round trip over the network to the

web server. Inthis case, page caching serves a sensible and user-friendly function.

Web
1 2,3 2,3

Web
URL
Web 5,6

5,6

Web Web
—Web

Now, consider the case of an online store: A user chooses items to buy and adds them to a
shopping cart. 1t’s generally not a good idea for the user to view a cached webpage representing
the shopping cart as it likely does not contain the most up-to-date information. If client-side

page caching is active, however, thisis areal possibility.

Web

WebObjects offers a number of mechanisms to deal with the problems of backtracking and

WebObjects 4/26

client-side caching. The first one you should use is a flag on the Application object that you set
using the setPageRefreshOnBacktrackEnabled method of the WOApplication class
(com.webobjects.appserver). When pageRefreshOnBacktrackEnabled is true, a number of
HTTP headers are added to each response generated by the WebObjects application to disable
client-side page caching. Table 6-1 shows these headers and their values.

WebObjects
WOApplication
setPageRefreshOnBacktrackEnabled Application
pageRefreshOnBacktrackEnabled true
WebObjects
HTTP 6-1

Table 6-1 HTTP response header sthat deactivate client-side page caching

Header Value

date The time the response page was generated.

expires Thetime the response isto expire. (Same as date.)
pragma no-cache

cache-control private, no-cache, no-store, must-revalidate, max-age=0

See section 14.9 of the HTTP 1.1 specification (RFC 2616) for more details on each of these
headers.

HTTP1.1 (RFC2616) 14.9

The pageRefreshOnBacktrackEnabled property affects all responses generated by an
application. If you want to restrict the behavior to a specific response, invoke the
disableClientCaching method of the WOResponse object (com.webobjects.appserver).
WOResponse also includes the methods setHeader and setHeaders, which allow you to
explicitly set the HTTP headers for a particular response.

pageRefreshOnBacktrackEnabled
WOResponse
disableClientCaching WOResponse
HTTP setHeader setHeaders

When a web browser receives a response page with the headers shown in Table 6-1, it should
not add the page to its local cache and it should invalidate the page as soon as it is displayed. In
other words, when users backtrack to retrieve previously viewed pages, the web browser should
request the response page from the application server. However, not all web browsers follow
this protocol, as demonstrated in “Web Browser Backtracking Behavior”. The first few times
the user backtracks to previously viewed pages, most web browsers ignore the HTTP headers
and render the page stored in the cache.

WebObjects 5/26

Web 6-1
Web
Web ”Web Browser Backtracking Behavior”

Web HTTP
render

When a web browser needs to refresh an expired page, it sends a request to the application
server, which accesses the server-side cache to reconstruct the page (see “Server-Side Page
Cache” for more information on server-side caching). “Request Processing” explained the
phases of the request-response loop in detail. The main phases are sync, action, and response.
When processing a refresh request, an application does not go through the sync and action

phases; it performs only the response phase.

Web

”Server-Side Page Cache”
“Request Processing” -

So how does an application know to perform only the response phase (just returning the
response page stored in the server cache, rather than regenerating it)? WebObjects assigns each
response a context ID. The context ID is increased by 1 each time a web browser requests a
specific page from the application server during a session. It identifies a specific instance of the
corresponding WOComponent. (Figure 6-1 shows the elements of a WebObjects URL).
Specifically, an application assigns the outermost component of a WOComponent a context 1D
each time that component is part of a response. So, if the same component is dynamically
generated multiple times, each instance of the page (each response) is assigned a unique context
ID.

WebObjects ID ID
Web
1 ID WO
6-1 WebObjectsURL

ID

Figure 6-1 Sructure of acomponent action URL

WebObjects 6/26

2.4

h11|::-:.'-'|f-::|-:~ -::-:uml.-i-:gi-bini-‘ll.-"-'eth:liectsl-iH glloWeblojects woalinstance/wo/PageMame. wo'session|DicontextlD. ale rnentIEIa

Wieb WebObjecls Application Fape Coneaxt ID
EBErver adaptor natance nanms
hostname nams number {optional)
Wk WabObjecls Raquast Sassion 0 Elamant |0
BEIVErS application handle
cgl-bim ey
dirgctory

Server-Side Component Definition Cache

When a web component is accessed for the first time, it’s definition is placed on the server-side
cache. Subsequent requests for the same component use the definition stored in the cache.
Using the web component cache improves performance because the application looks up a
component’s definition only one time during the lifetime of the application. You can control

web component caching at the application level and the component level.

Web

Web

Web

You can set a caching policy for the application (either active or inactive) for all components,
but can also override such policy on specific components. To set the caching policy for an
application or a web component you use the setCachingEnabled method of WOA pplication or
WOComponent, respectively. Sending true as the argument activates web component—definition

caching, while sending false deactivates it.

Web
WOApplication WOComponent setCachingEnabled
true Web false

2.5

Server-Side Page Cache

In addition to component-definition caching, WebObjects applications can also cache responses
sent to a client. When an already-generated page is requested from the application server,
WebObjects checks the context ID of the requested page with the context IDs of pages in its
cache. If it finds a match, it performs the response phase of the request-response loop. This
returns a response that has a new context ID and updated content from the invocation of the

WebObjects 7126

response phase of the request-response loop (dynamic bindings are again resolved in the

response phase).

WebObjects

WebObjects

By default, the WebObjects application server maintains a page cache for each session. Each

page a user accesses is added to the session’s page cache. When a user backtracks, accesses a

URL, or sdlects a bookmark of a page that is cached but expired in the local cache, the web

browser requests a refreshed version of that page from the application server. The server-side

page cache preserves resources as it hands out the result of previously generated pages. When

the page the user backtracksto is no longer in the cache, WebObjects returns an error page.

WebObjects
URL
Web
WebObjects
backtrack too far!

E mm > Web E
! I ! !
1 '] 1
| ! i
: 1 :
: ; :
: \ :
: \ :
| S woc !
. WebObjects :
E WO Session .
: WO ID :

WebObjects 8/26

If you deactivate the server-side page cache (by passing O to the setPageCacheSize method of
WOApplication), the application assumes that you intend to provide custom component state
persistence rather than rely on WebObjects inherent support. Deactivating the component cache
means that new WOComponent objects are instantiated (that is, each request for a component
creates a new instance of that component) with each cycle of the request-response loop, even
for component action requests that return the invoking page. This means that any nondefault
instance variable values are discarded with each subsequent cycle of the request-response |oop.

In large applications, this redundancy and overhead could hinder performance.

WOApplicaton setPageCacheSize 0
WebObjects

WO

WebObjects also provides a permanent page cache that is useful for storing subcomponents
such as navigation bars or page headers, or when using frame sets. You have to explicitly add
components to it using the savePagelnPermanentCache method of WOSession

(com.webobjects.appserver). Seethe API reference for details.

WebObjects

WOSession savePagelnPermanentCache
API

2.6 Web Browser Backtracking Behavior

To better understand the concepts of backiracking, client-side page caching, and
component-definition caching, perform the tasks described in the following sections.

2.6.1 Viewing the HTML Headers
Open the TimeDisplay project described in “Devel oping Dynamic Content”.

In Main.java, add a method called outgoingHeaders:

WebObjects 9/26

“Developing Dynamic Content” TimeDisplay
Main.java outgoingHeaders

public String outgoingHeaders() {
return context().response().headers().toString();
}

This gets the headers that are attached to each outgoing WOResponse. To view these headers,

override the sleep method in the Main class so that it prints the headers to the console:

WOResponse
Main sleep

public void sleep() {
System.out.printin("<Main.sleep> headers=" + outgoingHeaders());

}

Build and run the application. You should see output similar to thisin the console;

Welcome to TimeDisplay!

[2003-01-08 17:53:56 PST] <main> Opening application's URL in browser:
http://17.203.33.19:8888/ cgi - bi n/WebObj ects/TimeDisplay.woa

[2003-01-08 17:53:56 PST] <main> Waiting for requests...

<Main.sleep> headers={cache-control = ("private", "no-cache", "no-store", "must-revalidate",
"max-age=0"); expires = ("Thu, 09-Jan-2003 01:53:54 GMT"); date = ("Thu, 09-Jan-2003 01:53:54
GMT"); pragma = ("no-cache"); content-type = ("text/html"); }

The expires header is set to the time the component is generated, so that when the web browser
receives the webpage, it is already expired in the web browser’s cache. These headers (except
content-type) are appended to the response when the isPageRefreshOnBacktrackEnabled
method of WOA pplication returns true, which it does by default.

expires Web Web
Web
content-type WOApplication isPageRefreshOnBacktrackEnabled
true

WebObjects 10/26

. > Web

E — <html>.... — WOAppIication.
isPageRefreshOnBack
@" trackEnabled=true

[} | »

@-’ <html>....
appendToReponse WO
—
I:' <« htmis.... |r— WOApplication.
™ N isPageRefreshOnBack
by trackEnabled=false

Web

<html>....

WOApplication.isPageRefreshOnBacktrackEnabled

true Web HTTP

Web E

In Application.java, set the pageRefreshnOnBacktrackEnabled property to fase in the
constructor:

public Application() {
super();
System.out.printin("Welcome to " + this.name() + "!");
setPageRefreshOnBacktrackEnabled(false);

}

WebObjects 11/26

Build and run the application. You should see output similar to the following in the console;

Welcome to TimeDisplay!

[2003-01-08 17:57:15 PST] <main> Opening application's URL in
browser:http://17.203.33.19:8888/cgi-bin/WebObjects/TimeDisplay.woa

[2003-01-08 17:57:15 PST] <main> Waiting for requests...<Main.sleep> headers={content-type =
("text/html"); }

Notice that the headers disabling client-side caching are not generated in the response.

2.6.2 Standard Webpage Backtracking
So, how does the pageRefreshOnBacktrackEnabled property of WOApplication affect user
backtracking? You need to add some more code to trace what WebObjects does behind the

scenes. Modify Main’s constructor to look like this:

WOApplication pageRefreshOnBackTrackEnabled

WebObjects
Main

public Main(WOContext context) {
super(context);
System.out.printin("<Main> context ID="+ context().contextID());

}

Each time an instance of Main is created, this code outputs the context ID of the WOResponse
associated with the new instance. This allows you to see when user actions like clicking the
Refresh hyperlink on the webpage or the web browser’s Back button produce a new instance of
the Main component. While thisis useful information, you may also want to know when a user
action causes the application to send a new response page to the client web browser. You can

trace this by adding similar code to the refreshTime method:

Main
WOResponse ID Web
Web Main
?

public WOComponent refreshTime() {
System.out.printin("<Main.refresh> contextiD=" + context().contextID());
loadCount++;
return null;

}

Now, remove the sleep and outgoingHeaders methods and build and run the application.

WebObjects 12/26

Click Refresh Time three times. This prints the incremental context ID of the instance of Main
through which you navigate. When you click Refresh Time, the application invokes the
refreshTime method, which outputs the context 1D of the outgoing response to the console:

Refresh Time? 3 Main
ID Refrech Time
ID refrechTime

Welcome to TimeDisplay!

[2003-01-08 18:56:18 PST] <main> Opening application's URL in browser:
http://17.203.33.19:8888/cgi-bin/WebObjects/TimeDisplay.woa
[2003-01-08 18:56:18 PST] <main> Waiting for requests...

<Main> context ID=0

<Main.refreshTime> context ID: 1

<Main.refreshTime> context ID: 2

<Main.refreshTime> context ID: 3

Now, click your browser’s Back button three times. Notice that nothing is printed to the console.
This is because, when pageRefreshOnBacktrackEnabled is set to false, backtracking does not
result in a request to the application; the page is simply rendered using the copy in the
browser’s cache. Similarly, choosing the bookmark of a page cached in the web browser does
not result in a request to the application.

3

pageRefreshBacktrackEnabled false

Web

2.6.3 Refreshing Pages When Backtracking
When pageRefreshOnBacktrackEnabled is set to true, backtracking should result in a request to
the application (you should see a context ID line with a new context D) when a user backtracks,

although the actual behavior differs among various web browsers.

pageRefreshOnBacktrackEnabled true

In Mac OS X, web browsers that use the Gecko HTML rendering engine (such as Chimera and
Mozilla), comply most closdly to the HTTP specification. Clicking the Back button causes the
browser to ask for an updated version of an expired webpage. Other browsers, such as Internet
Explorer and OmniWeb, behave differently: The first few clicks (two to three, depending on the

loadCount++

WebObjects 13/26

browser) of the Back button reload the page from the cache. Subsequent clicks cause the
browser to send a request to the application.

Mac OS X Gecko HTML Web Chimera
Mozilla HTTP Web

IE OmniWeb
2,3

Notice that when the browser requests the updated version of the webpage from the application,
the page-load counter doesn’t decrease, but the timeis updated.

Web

Web
WO

Web WO HTTP
appendToResponse()

WebObjects 14/26

contextlD = n

Sync, Invoke,
Append

contextID = n+1

a

Sync, Invoke,
p Append
A 4
contextlD = n+2
* Sync, Invoke,
/ - I Append
o
\
o contextID = n+1
= < Syne, Hvoke, -
/ Append
|
A" contextlD = n
= < Syne, Hvoke, -
Append

You must test your application on many configurations to ensure that it provides a good user

experience.

2.6.4 Disallowing Server-Side Caching
A WebObjects application can hand back only the response of a previously generated page
when server-side page caching is active, which is the default. When this feature is inactive, the
println statement in the constructor of the Main class (of the TimeDisplay application described
earlier in this chapter) isinvoked each time you click the Refresh Time link. This indicates that
the application instantiates a Main object each time the refreshTime method of Main is invoked,
instead of returning the current Main object.

WebObjects 15/26

WebObjects

TimeDisplay Main
printin Refrech Time
Main Main refrechTme
Main

Modify Main’s constructor by adding a call to setPageCacheSize:

public Application() {
super();
System.out.printin("Welcome to " + this.name() + "!");
setPageRefreshOnBacktrackEnabled(true);
setPageCacheSize(0);

}

Build and run the application. After clicking Refresh Time three times, you should see the

following consol e outpui:

setPageCacheSize Main
Refrech Time 3

Welcome to TimeDisplay!

[2003-01-08 20:31:58 PST] <main> Opening application's URL in browser:
http://17.203.33.19:8888/cgi-bin/WebObjects/TimeDisplay.woa
[2003-01-08 20:31:57 PST] <main> Waiting for requests...
<Main> context ID=0

<Main> context ID=1

<Main.refreshTime> context ID: 1

<Main> context ID=2

<Main.refreshTime> context ID: 2

<Main> context ID=3

<Main.refreshTime> context ID: 3

Notice that Main’s constructor is invoked each time you click Refresh Time, before the
refreshTime method is executed. An instance of Main is created during each cycle of the
regquest-response loop. Also notice that the page-view counter does not increase. The primary
consequence of deactivating server-side page caching is that the values of variables in

components are lost after each response is generated.

Refrech Time refrechTime Main
Main
page-view

2.6.,5 Setting the Size of the Server-Side Cache
Instead of completely disallowing server-side caching, you can use the setPageCacheSize
method of WOApplication to define the number of instances of a component an application is

WebObjects 16/26

to keep in its cache. For example, if you want to maintain state between cycles of the
regquest-response loop (that is, to ensure that state is transferred between user actions), set the
pageCacheSizeto 1.

WOApplication setPageCacheSize

pageCacheSize 1

Modify Application’s constructor by adding a call to setPageCacheSize, setting the
pageCacheSize property to 10.

public Application() {
super();
System.out.printin("Welcome to " + this.name() + "I");
setPageRefreshOnBacktrackEnabled(true);
setPageCacheSize(10);

}

Figure 6-2 shows the page an application sends to a web browser when a user backtracks too far

(the page is no longer in the cache).

Application setPageCacheSize pageCacheSize
10 6-2
Web

Figure 6-2 Backtracking-error webpage

0686 %y Missing Page Error =
i Page address: a hitp: £/ 17.203,33,19; EB8S/ cgi-bin /WebDbjects S TimeDisplay.woa fwa/RpLEalyDeifPECZuEBSdIM 11,5 v 1 0
Zﬁ You backtracked too far.
Re-enter The application backtracking limit of 10 has been exceeded,
TimeDisplay

You can customize the eror page wusers receive by implementing the
handl ePageRestorationErrorlnContext method in the Application class:

| public WOResponse handlePageRestorationErrorinContext(WOContext aContext) { |

WebObjects 17/26

WOComponent nextPage;
nextPage = (Error)pageWithName("Error", aContext);
return nextPage.generateResponse();

}

In this code listing, a page is instantiated from a web component named Error, which you must
build. The contents of the component are completely up to you, but should include the name of
the application, your company’s name, and a friendly message that tells the user that something
went wrong and suggests ways they can return to normal operation.

Applciation handlePageRestrorationErrorinContext

Error Web

WOApplication.setPageRefreshOnBacktrackEnabled()

public void setPageRefreshOnBacktrackEnabl ed(boolean aFlag)

When aFlag is true, disables caching of pages by the client by setting the page's expiration-time
header to the current date and time. By default, this attribute is set to true. Disabling of client
caching affects what happens during backtracking. With client caching disabled, the browser
resends the URL to the server for the page requested by backtracking. The application will then
return a new page to the browser (corresponding to a new WOComponent instance). This
behavior is desirable when you do not want the user to backtrack to a page that might be

obsolete because of changes that have occurred in the session.

aFlag true expiration-time

true

URL HTTP
WO

When this flag is turned on and a request corresponding to a client backtrack occurs, the
retrieved page will only be asked to regenerate its response. The first two phases of a normal

reguest-response |oop (value extraction from the request and action invocation) do not occur.

WebObjects 18/26

Parameters: aFlag - when true caching of pages by the client is disabled
See Also: isPageRefreshOnBacktrackEnabled()

3.2 WOApplication.setpageCacheSize

public void setPageCacheSize(int anUnsigned)

Sets the number of page instances the cache will hold. Disable page caching by passing O for
anUnsigned. Pages that require state must be cached in order to access that state for the very
next request. If you have components that hold state (which is the usual case), disable page
caching by passing 1 for anUnsigned.

Parameters:

anUnsigned - the number of pages the cache will hold

3.3 WOApplication.setCachingEnabled

public void setCachingEnabled(boolean aBool)

Sets whether or not component caching is enabled. If thisis enabled, changes to a component
will be reparsed after being saved, assuming the project is under the NSProjectSearchPath. Note
that this has no effect on page caching.

NSProjectSearchPath

Parameters:

aBool - boolean specifying whether or not component caching is enabled

WebObjects 19/26

4

4.1 InternetExplorer
[HOWTQ] Internet Explorer
3
-- begin --
HTTP Internet Explorer Web
Microsoft Internet Information Server (11S) Active Server Pages
(ASP)

<% Response.CacheControl = "no-cache" %>
<% Response.AddHeader "Pragma’, "no-cache" %>
<% Response.Expires = -1 %>

Expiration Expires
Web Web
Web
HTTP Expires
Expires
5
Web
5 Expires
Web
1
Web 1
Expires
3 - 234067 [HOWTO] Internet Explorer

(http://support.microsoft.com/default.aspx?scid=kb;ja;234067&Product=ie)

WebObjects 20/26

n _1"

Internet Explorer If-Modified-Since
Web
(ll ll) Wm
I I
HTTP1.1 (RFC2616) Expires " Expires.
-1 RFC -1
Expires: wkday "," SP datel SP time SP "GMT"
wkday = "Mon" | "Tue" | "Wed"
| "Thu" | "Fri" | "Sat" | "Sun"
datel = 2DIGIT SP month SP 4DIGIT
time =2DIGIT ":" 2DIGIT ":" 2DIGIT
DIGIT = <any US-ASCII digit "0".."9">
month = "Jan" | "Feb" | "Mar" | "Apr"
| "May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Oct" | "Nov" | "Dec"
Tue, 29 Feb 2000 12:00:00 GMT
"GMT" HTTP
___________________________ O T
Cache-Control
Web
Internet Explorer HTTP 1.1
Cache-Control HTTP 1.1
[no-cash] Web
Web
Cache-Control
"Expires; -1"
Pragma : No-Cache
HTTP 1.0 Cache-Control
HTTP 1.0 Internet Explorer HTTP
Pragma: no-cache
(https://) Pragma:
no-cache Internet Explorer

WebObjects 21/26

Pragma: no-cache
HTTP1.0 11

Web
Cache-Control
_— end _—

5 | love_my

From http://homepage.mac.conVl_love_my/webobjects.html

WebObjects is Apple’s pure Java application server. NeXT pioneered the application server
market with this excellent piece of software long before Java even existed. If thisis newsto you,
check out the WebObjects product pages.

Even as the application server market expands, Apple still offers the most versatile solution.

The persistence layer offered by the Enterprise Objects Framework (EOF) is a very powerful
tool that compares well to the much hyped EJBs, by actually providing object persistence - not
just hooks for you to plug into - even in complex object-to-relational mapping sitations. In fact,
EJBs focus mainly on abject distribution and end up being a non-portable equivalent to
CORBA with virtually no object persistence. EOF however specialises in fine grained object
persistence, making it the more likely candidate for OO applications that need database access.

While WebObjects supports Java clients and standal one applications, it is mostly used to create
thin client web applications. Again it can outperform its closest competitor, JSP, by providing a
clean architecture that separates HTML files from Java code. In fact, WebObjects uses an

architecture of reusable components for an object oriented approach to interface building.

Well, there is so much more to say, but some day you will have to check it out on your own. |
will, of course, be glad to engage in further discussion. Just email me.
5.1.1 Client-side backtracking - sample code

Client-side backtracking - sample code

WebObjects 22/26

This code snippet provides ways to handle client-side backtracking (the evil back button).

The main problems related to backtracking are:

* Wrong items being selected from WORepetitions after the user backtracked
* A component being asked to perform an action that isinappropriate in the current state,

e.g. cancel an edit after committing it

The first problem is in fact caused by a more general problem: a component always exits with
only one state, i.e. the latest one. The user may however backtrack to a cached page that
matches a previous state: showing components that should be hidden, displaying an earlier

batch of a display group,... .

The second problem is closely related, but differs by the fact that the former state of the
component is permanently lost in that the moving to the new state has non reversible effects
like deleting from a database.

Another problem is that some actions modifying a display group may get repeated, causing
unwanted behaviour like deleting the wrong item. This situation fits the 2nd problem: the state
change is so dramatic that backtracking is not tolerable.

The workaround | suggest tries to address these two problems. | tried to come up with a

mechanism that is very general and should apply to many situations. Most notably, the business

WebObjects 23/26

decision of what to do when the user has backtracked is |€eft to the afffected component. There
will however be situations that can not be addressed by my approach. This fix does not address
problems with users reloading a page.

The MY BackTrackComponent class detects backtracking by comparing context 1Ds between
requests. Deciding what to do in that event is up to the subclass. Such behavior may be
provided by overriding the following methods:

protected abstract bool ean needsBack TrackDetection();
protected void sleepl nContext(String contextl D)
protected void awakeFromContext(String contextl D)

Two common situations may be handled by simply implementing needsBack TrackDetection():

* The component may consider backtracking inappropriate an refuse it by throwing an
exception that should be handled by the exception handler on the application level. This is
likely the appropraite behavior of pages that modify EOs or are part of a sequential workflow.
All that needs to be done to get this behaviour is to implement needsBackTrackDetection() to
return true.

* The component may accept the request without any special behavior. By implementing
needsBackTrackDetection() to return false, MY BackTrackComponent may be configured to
behave exactely like a standard WOComponent. This is useful if your architecture forces a
component to extend MY BackTrackComponent even though it does not require its behavior.

Thisislikely to be the appropriate behavior that do not change state. E.g. inspect pages.

2 needsBackTrackDetection()

©)
EO

WebObjects 24126

needsBackTrackDetection()
true
*
needsBackTrackDetection() false MyBackTrackComponent
WO
MyBackTrackComponent

MY BackTrackComponent.Defaultimplentation is a sublcass of MY BackTrackComponent

that offers utilities to implement another commonly usefull reaction to backtracking:

* The component may also attempt to restore the state it was in at the time the page the user is
seeing was generated. This is likely to be the appropriate behavior for list pages: the current
batch index of the WODisplayGroup needs to be restored in order to respect the user's selection

MyBackTrackComponent.Defaultimplementation
MyBackTrackComponent

Subclasses configure these behaviors by overriding the following methods:

protected NSArray getPersistentK eys()

The getPersistentKeys() returns the list of keys to access via key-value coding for
storing/restoring component state.

A list page would override this to return an array containing the String "batchindex" and
implement the _getBatchindex() and _setBatchindex(int) methods. With this and a
needsStatePersistence() that returns true the second behavior is activated.

This code plays nicely with the sever-side backtracking code sample posted on my web site.
You meely need to modify MYBackTrackComponent to extend the

MY BackButtonComponent class from the server-side backtracking example.

BTW, this code was written with component actions in mind and tested with WebObjects 5.1.x.
It will probably need to be amended to work with direct actions. Obvioudly, this code is meant
to be used with application().setPageRefreshOnBackirackEnabled(false). | would be glad to
hear your opinion on this code snippet and will gladly help you with more detailed information

than provided above. Mail meat: I_love_my@mac.com

last edited: May 14, 2002

WebObjects 25/26

5.1.2 Server-side backtracking - sample code

Server-side backtracking - sample code

This code snippet provides an implementation of a server-side backtracking mechanism similar
to the browser's back button.

The server-side implementation offers several benefits though:

- It guarantees that the destination component is still available

- It gives a more graceful, i.e. application like behavior, where backtracking brings up the
previous page instead of a previous state of the current one. E.g. if a form validation error is
sanctioned by redisplaying the form augmented with an error message, the browser back button
would return to the form as it was before validation. Server-side backtracking would bring up

the page that let to the form.

The main idea behind this code is that the constructor of top-level componentsisinvoked at the
page creation. That is when pageWithName is called. Thisis done in the request-response loop
preceeding the one for which the pageis destined. Thus we get a chance to access the preceding

context.

Thus the only component that needs special code, i.e. extend MY Component rather than
WOComponent, is the component that has the back button. It can backtrack to any other page.

BTW, this code was written with component actions in mind and tested with WebObjects 5.1.x.
It will probably need to be amended to work with direct actions.

| would be glad to hear your opinion on this code snippet and will gladly help you with more

detailed information than provided above. Mail me at: |_love_my@mac.com

last edited: May 14, 2002

WebObjects 26/26

